新东方网>英语>英语学习>英语阅读>双语新闻>生活百科>正文

知乎精选:能不能用数学解释“耳机打结"?

2016-12-21 13:51

来源:Quora

作者:

  Is There Any Mathematical Explanation for the Entanglement of the Earphones?

  能不能用数学解释下“为什么耳机老打结”?

  获得128好评的的回答@Conner Davis

  There’s paper I can't find at the moment that analyzes the probability of a length of string tangling in your pocket in an hour as a function of its length. They found that a string of 23cm or more will probably form a knot within the first hour.

  有一篇这样的论文,不过我现在找不到了,它分析了口袋里的绳子在1小时内打结的概率与绳子长度的关系,还提出了一个以绳长为x的函数。他们发现长度为23厘米或者以上的绳子可能在第1个小时内就打结。

  Your headphones are longer than that and have three ends instead of two, so the probability they will remain untangled for an hour is even lower.

  你的耳机比23厘米要长,而且总共有3个头,所以它在第1个小时里不打结的概率会更加低。

  获得1.7k好评的回答@Senia Sheydvasser

  Back in 1989, Nicholas Pippenger wrote a paper about knots in random walks. What he showed is that if you have a random walk on the 3D lattice, the probability of that walk forming a knot goes to very, very quickly.

  早在1989年,Nicholas Pippenger就曾写过一篇关于“随机游动中的绳结”的论文。文中写道如果你在一个3D环境中做随机游动,游动中形成绳结的概率将非常大。

  There has been other work on knots in random walks since then, and the common thread seems to be that knots form much more readily than you think they do. If your earphones are jostling around in your pocket at all, the probability that they will tangle is high.

  从那以后,陆续出了其他关于“随机游动中的绳结”的著作。普通的线比你想象中更容易打结,容易得多。如果你的耳机线不停地在你的口袋里互相推撞,它们打结的可能性将非常高。

(编辑:何莹莹)

版权及免责声明

凡本网注明"稿件来源:新东方"的所有文字、图片和音视频稿件,版权均属新东方教育科技集团(含本网和新东方网) 所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他任何方式复制、发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方",违者本网将依法追究法律责任。

本网未注明"稿件来源:新东方"的文/图等稿件均为转载稿,本网转载仅基于传递更多信息之目的,并不意味着赞同转载稿的观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方",本网将依法追究法律责任。

如本网转载稿涉及版权等问题,请作者见稿后在两周内速来电与新东方网联系,电话:010-60908555。

热搜关键词